It’s been over a year since Google’s DeepMind first made its splash with the reinforcement-learning based chess playing engine AlphaZero. The first anniversary of the story of AlphaZero being released also coincided with the publication of the peer-reviewed paper.
To go with the peer-reviewed paper, DeepMind has released a further 200 games played between AlphaZero and the conventional chess engine StockFish, which is again heavily loaded in favour of wins for AlphaZero, but also contains 6 game where AlphaZero lost. I’ve been following these games on GM Daniel King’s excellent Powerplaychess channel, and want to revise my opinion on AlphaZero.
Back then, I had looked at AlphaZero’s play from my favourite studs and fighter framework, which in hindsight doesn’t do full justice to AlphaZero. From the games that I’ve seen from the set released this season, AlphaZero’s play hasn’t exactly been “stud”. It’s just that it’s much more “human”. And the reason why AlphaZero’s play possibly seems more human is because of the way it “learns”.
Conventional chess engines evaluate a position by considering all possible paths (ok not really, they use an intelligent method called Alpha-Beta Pruning to limit their search size), and then play the move that leads to the best position at the end of the search. These engines use “pre-learnt human concepts” such as point count for different pieces, which are used to evaluate positions. And this leads to a certain kind of play.
AlphaZero’s learning, process, however, involves playing zillions of games against itself (since I wrote that previous post, I’ve come back up to speed with reinforcement learning). And then based on the results of these games, it evaluates positions it reached in the course of play (in hindsight). On top of this, it builds a deep learning model to identify the goodness of positions.
Given my limited knowledge of how deep learning works, this process involves AlphaZero learning about “features” of games that have more often than not enabled it to win. So somewhere in the network there will be a node that represents “control of centre”. Another node deep in the network might represent “safety of king”. Yet another might perhaps involve “open A file”.
Of course, none of these features have been pre-specified to AlphaZero. It has simply learnt it by training its neural network on zillions of games it has played against itself. And while deep learning is hard to “explain”, it is likely to have so happened that the features of the game that AlphaZero has learnt are remarkably similar to the “features” of the game that human players have learnt over the centuries. And it is because of the commonality in these features that we find AlphaZero’s play so “human”.
Another way to look at is from the concept of “10000 hours” that Malcolm Gladwell spoke about in his book Outliers. As I had written in my review of the book, the concept of 10000 hours can be thought of as “putting fight until you get enough intuition to become stud”. AlphaZero, thanks to its large number of processors, has effectively spent much more than “10000 hours” playing against itself, with its neural network constantly “learning” from the positions faced and the outcomes of the game reached. And this way, it has “gained intuition” over features of the game that lead to wins, giving it an air of “studness”.
The interesting thing to me about AlphaZero’s play is that thanks to its “independent development” (in a way like the Finches of Galapagos), it has not been burdened by human intuition on what is good or bad, and learnt its own heuristics. And along the way, it has come up with a bunch of heuristics that have not commonly be used by human players.
Keeping bishops on the back rank (once the rooks have been connected), for example. A stronger preference for bishops to knights than humans. Suddenly simplifying from a terrifying-looking attack into a winning endgame (machines are generally good at endgames, so this is not that surprising). Temporary pawn and piece sacrifices. And all that.
Thanks to engines such as LeelaZero, we can soon see the results of these learnings being applied to human chess as well. And human chess can only become better!