Average skill and peak skill

One way to describe how complex a job is is to measure the “average level of skill” and “peak level of skill” required to do the job. The more complex the job is, the larger this difference is. And sometimes, the frequency at which the peak level of skill is required can determine the quality of people you can expect to attract to the job.

Let us start with one extreme Рthe classic case of someone  turning screws in a Ford factory. The design has been done so perfectly and the assembly line so optimised that the level of skill required by this worker each day is identical. All he/she (much more likely a he) has to do is to show up at the job, stand in the assembly line, and turn the specific screw in every single car (or part thereof) that passes his way.

The delta between the complexity of the average day and the “toughest day” is likely to be very low in this kind of job, given the amount of optimisation already put in place by the engineers at the factory.

Consider a maintenance engineer (let’s say at an oil pipeline) on the other hand. On most days, the complexity required of the job is very close to zero, for there is nothing much to do. The engineer just needs to show up and potter around and make a usual round of checks and all izz well.

On a day when there is an issue however, things are completely different – the engineer now needs to identify the source of the issue, figure out how to fix it and then actually put in the fix. Each of this is an insanely complex process requiring insane skill. This maintenance engineer needs to be prepared for this kind of occasional complexity, and despite the banality of most of his days on the job, maintain the requisite skill to do the job on these peak days.

In fact, if you think of it, a lot of “knowledge” jobs, which are supposed to be quite complex, actually don’t require a very high level of skill on most days. Yet, most of these jobs tend to employ people at a far higher skill level than what is required on most days, and this is because of the level of skill required on “peak days” (however you define “peak”).

The challenge in these cases, though, is to keep these high skilled people excited and motivated enough when the job on most days requires pretty low skill. Some industries, such as oil and gas, resolve this issue by paying well and giving good “benefits” – so even an engineer who might get bored by the lack of work on most days stays on to be able to contribute in times when there is a problem.

The other way to do this is in terms of the frequency of high skill days – if you can somehow engineer your organisation such that the high skilled people have a reasonable frequency of days when high skills are required, then they might find more motivation. For example, you might create an “internal consulting” team of some kind – they are tasked with performing a high skill task across different teams in the org. Each time this particular high skill task is required, the internal consulting team is called for. This way, this team can be kept motivated and (more importantly, perhaps) other teams can be staffed at a lower average skill level (since they can get help on high peak days).

I’m reminded of my first ever real taste of professional life – an internship in an investment bank in London in 2005. That was the classic “high variance in skills” job. Having been tested on fairly extreme maths and logic before I got hired, I found that most of my days were spent just keying in numbers in to an Excel sheet to call a macro someone else had written to price swaps (interest rate derivatives).

And being fairly young and immature, I decided this job is not worth it for me, and did not take up the full time offer they made me. And off I went on a rather futile “tour” to figure out what kind of job has sufficient high skill work to keep me interested. And then left it all to start my own consultancy (where others would ONLY call me when there was work of my specialty; else I could chill).

With the benefit of hindsight (and having worked in a somewhat similar job later in life), though, I had completely missed the “skill gap” (delta between peak and average skill days) in my internship, and thus not appreciated why I had been hired for it. Also, that I spent barely two months in the internship meant I didn’t have sufficient data to know the frequency of “interesting days”.

And this is why – most of your time might be spent in writing some fairly ordinary code, but you will still be required to know how to reverse a red-black tree.

Most of your time might be spent in writing SQL queries or pulling some averages, but on the odd day you might need to know that a chi square test is the best way to test your current hypothesis.

Most of your time might be spent in managing people and making sure the metrics are alright, but on the odd day you might have to redesign the process at the facility that you are in charge of.

In most complex jobs, the average day is NOT similar to the most complex day by any means. And thus the average day is NOT representative of the job. The next time someone I’m interviewing asks me what my “average day looks like”, I’ll maybe point that person to this post!

Put Comment