It seems like capital markets quants have given up on the lognormal model for good, for nobody described Facebook’s stock price drop last Thursday as a “one in a billion trillion event”. For that is the approximate probability of it happening, if we were to assume a lognormal model of the market.

Without loss of generality, we will use 90 days trailing data to calculate the mean and volatility of stock returns. As of last Thursday (the day of the fall), the daily mean returns for FB was 0.204%, or an annualised return of 51.5% (as you can see, very impressive!). The daily volatility in the stock (using a 90-day lookback period again) was 1.98%, or an annualised volatility of 31.4% . While it is a tad on the higher side, it is okay considering the annual return of 51.5%.

Now, traditional quantitative finance models have all used a lognormal distribution to represent stock prices, which implies that the distribution of stock price returns is normal. Under such an assumption, the likelihood of a 18.9% drop in the value of Facebook (which is what we saw on Thursday) is very small indeed.

In fact, to be precise, when the stock is returning 0.204% per day with a vol of 1.98% per day, the an 18.9% drop is a **9.7 sigma event**. In other words, if the distribution of returns were to be normal, Thursday’s drop is 9 sigmas away from normal. Remember that most quality control systems (admittedly in industrial settings, where faults are indeed governed by a nearly normal distribution) are set for a six sigma limit.

Another way to look at Thursday’s 9.7 sigma event is that again under the normal distribution, the likelihood of seeing this kind of a fall in a day is $math ~10^{-21}$. Or one in a billion trillion. In terms of the number of trading days required for such a fall to arrive at random, it is of the order of a billion billion years, which is an order of magnitude higher than the age of the universe!

In fact, when the 1987 stock market crash (black monday) happened, this was the defence the quants gave for losing their banks’ money – that it was an incredibly improbable event. Now, my reading of the papers nowadays is sketchy, and I mostly consume news via twitter, but I haven’t heard a single such defence from quants who lost money in the Facebook crash. In fact, I haven’t come across too many stories of people who lost money in the crash.

Maybe it’s the power of diversification, and maybe indexing, because of which Facebook is now only a small portion of people’s portfolios. A 20% drop in a stock that is even 10% of your portfolio erodes your wealth by 2%, which is tolerable. What possibly caused traders to jump out of windows on Black Monday was that it was a secular drop in the US market then.

Or maybe it’s that the lessons learnt from Black Monday have been internalised, and included in models 30 years hence (remember that concepts such as volatility smiles and skews, and stochastic volatility, were introduced in the wake of the 1987 crash).

That a 20% drop in one of the five biggest stocks in the United States didn’t make for “human stories” or stories about “one in a billion billion event” is itself a story! Or maybe my reading of the papers is heavily biased!

**PostScript**

Even after the spectacular drop, the Facebook stock at the time of this update is trading at 168.25, a level last seen exactly 3 months ago – on 26th April, following the last quarter results of Facebook. That barely 3 months’ worth of earnings have been wiped out by such a massive crash suggests that the only people to have lost from the crash are traders who wrote out of the money puts.

A simple log-normal model will always predict crashes a highly unlikely event. However, we do know that crashes like these are not uncommon events. What would describe this better would be a jump-diffusion process overlayed on top of a log-normal process. The problem with jump models is that they predict jumps well and thus needs market data to calibrate to – Which for liquid indices like S&P is their Crash Put quotes. But for single stocks, there is no such market. So, even though we know that a jump is pretty likely every now and then, we don’t have any good data to predict its distribution, amplitude and frequency.