# Speed, Accuracy and Shannon’s Channel Coding Theorem

I was probably the CAT topper in my year (2004) (they don’t give out ranks, only percentiles (to two digits of precision), so this is a stochastic measure). I was also perhaps the only (or one of the very few) person to get into IIMs that year despite getting 20 questions wrong.

It had just happened that I had attempted far more questions than most other people. And so even though my accuracy was rather poor, my speed more than made up for it, and I ended up doing rather well.

I remember this time during my CAT prep, where the guy who was leading my CAT factory once suggested that I was making too many errors so I should possibly slow down and make fewer mistakes. I did that in a few mock exams. I ended up attempting far fewer questions. My accuracy (measured as % of answers I got wrong) didn’t change by much. So it was an easy decision to forget above accuracy and focus on speed and that served me well.

However, what serves you well in an entrance exam need not necessarily serve you well in life. An exam is, by definition, an artificial space. It is usually bounded by certain norms (of the format). And so, you can make blanket decisions such as “let me just go for speed”, and you can get away with it. In a way, an exam is a predictable space. It is a caricature of the world. So your learnings from there don’t extend to life.

In real life, you can’t “get away with 20 wrong answers”. If you have done something wrong, you are (most likely) expected to correct it. Which means, in real life, if you are inaccurate in your work, you will end up making further iterations.

Observing myself, and people around me (literally and figuratively at work), I sometimes wonder if there is a sort of efficient frontier in terms of speed and accuracy. For a given level of speed and accuracy, can we determine an “ideal gradient” – on which way a person needs to move in order to make the maximum impact?

Once in a while, I take book recommendations from academics, and end up reading (rather, trying to read) academic books. Recently, someone had recommended a book that combined information theory and machine learning, and I started reading it. Needless to say, within half a chapter, I was lost, and I had abandoned the book. Yet, the little I read performed the useful purpose of reminding me of Shannon’s channel coding theorem.

Paraphrasing, what it states is that irrespective of how noisy a channel is, using the right kind of encoding and redundancy, we will be able to predictably send across information at a certain maximum speed. The noisier the channel, the more the redundancy we will need, and the lower the speed of transmission.

In my opinion (and in the opinions of several others, I’m sure), this is a rather profound observation, and has significant impact on various aspects of life. In fact, I’m prone to abusing it in inexact manners (no wonder I never tried to become an academic).

So while thinking of the tradeoff between speed and accuracy, I started thinking of the channel coding theorem. You can think of a person’s work (or “working mind”) as a communication channel. The speed is the raw speed of transmission. The accuracy (rather, the lack of it) is a measure of noise in the channel.

So the less accurate someone is, the more the redundancy they require in communication (or in work). For example, if you are especially prone to mistakes (like I am sometimes), you might need to redo your work (or at least a part of it) several times. If you are the more accurate types, you need to redo less often.

And different people have different speed-accuracy trade-offs.

I don’t have a perfect way to quantify this, but maybe we can think of “true speed of work” by dividing the actual speed in which someone does a piece of work by the number of iterations they need to get it right.  OK it is not so straightforward (there might be other ways to build redundancy – like getting two independent people to do the same thing and then tally the numbers), but I suppose you get the drift.

The interesting thing here is that the speed and accuracy is not only depend on the person but the nature of work itself. For me, a piece of work that on average takes 1 hour has a different speed-accuracy tradeoff compared to a piece of work that on average takes a day (usually, the more complicated and involved a piece of analysis, the more the error rate for me).

In any case, the point to be noted is that the speed-accuracy tradeoff is different for different people, and in different contexts. For some people, in some contexts, there is no point at all in expecting highly accurate work – you know they will make mistakes anyways, so you might as well get the work done quickly (to allow for more time to iterate).

And in a way, figuring out speed-accuracy tradeoffs of the people who work for you is an important step in getting the best out of them.